

Application Analysis and Decision with Dynamic Analysis

by Joshua S Edwards

ARL-CR-0754 December 2014

prepared by

ICF International
9300 Lee Highway
Fairfax, VA 22031

under contract

W911QX-14-F-0020

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1138

ARL-CR-0754 December 2014

Application Analysis and Decision with Dynamic Analysis

Joshua S Edwards
ICF International

prepared by

ICF International
9300 Lee Highway
Fairfax, VA 22031

under contract

W911QX-14-F-0020

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Oct 2013 – Oct 2014
4. TITLE AND SUBTITLE

Application Analysis and Decision with Dynamic Analysis
5a. CONTRACT NUMBER

W911QX-14-F-0020
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Joshua S Edwards
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICF International
9300 Lee Highway
Fairfax, VA 22031

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-CR-0754

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
2800 Powder Mill Road
Adelphi, MD 20783-1138

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The US Army Research Laboratory currently has a mobile application analysis tool known as A2D, Application Analysis and
Decision. It is a static analysis tool that takes in a mobile application and parses out a large amount of data relevant to human
analysts and stores it in a database. It would then use some of these data to generate a risk score for the application. However,
static analysis alone is not enough to fully analyze an application. To overcome the obstacles inherent in static analysis, A2D
was extended to include dynamic analysis functionality. This will allow A2D to run an application in a controlled, virtual
environment, and interact with it in ways similar to a human user in an attempt to elicit a response from the application. Once
the series of interactions have concluded, A2D will gather useful data for analysis and store them in the primary A2D database
for future analysis.
15. SUBJECT TERMS

Android, dynamic analysis

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

22

19a. NAME OF RESPONSIBLE PERSON
Joshua S Edwards

A. Report

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
301-394-1578

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Structure 1

3. Methods 3

3.1 Entry Box ..3

3.2 Analyzer ..6

3.3 Phone ...8

4. Results 9

5. Conclusions 10

6. References 11

List of Symbols, Abbreviations, and Acronyms 12

Distribution List 13

 iv

List of Figures

Fig. 1 Overview of VM network structure...2

Fig. 2 Example strace line after parsing...4

Fig. 3 Example logcat line after parsing ..5

Fig. 4 Example packet, performing a domain lookup, after parsing..6

List of Tables

Table 1 Permissions and associated interactions ...8

Table 2 IP addresses assigned to VMs ...9

 v

Acknowledgments

Special thanks go to Nathaniel Lageman and Mark Lindsey from Pennsylvania State University
for initial development of the multiprocessing functionality between the host process and
analysis pairs.

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

In 2012, the US Army Research Laboratory began development of a mobile application analysis
tool known as A2D, Application Analysis and Decision. This was a static analysis tool that took
in a mobile application and parsed out a large amount of data relevant to human analysts and
stored it in a database. It would then use some of these data to generate a risk score for the
application.

A2D is still in use, but it is missing a major feature; it is only a static analysis tool. The
applications it processes are never actually run—leaving it vulnerable to obfuscation techniques
that may hide the true functionality of the application.

To overcome this obstacle, work began on a dynamic analysis extension. This new functionality
installs and launches the application on 1 of several virtual machines (VMs) that sit on top of a
simulation of a standard network. The application will not be capable of reaching the wider
Internet. As it runs, A2D will interact with the virtual phone and perform actions that the
application may be waiting for, such as sending Short Message Service (SMS) messages and
changing the phone’s geographic location. These interactions will not be arbitrary; rather, they
will be chosen based on metadata about the application collected during static analysis.

Once the series of interactions have concluded, A2D will gather useful data for analysis,
including: logcat output, strace output, network traffic, and a screenshot. These data will be
retrieved and stored in a primary A2D database for future analysis.

2. Structure

Nearly all of the dynamic analysis functionality takes place within a virtual environment. For this
effort, a VMWare ESXi server was used. Several VMs run on this server and perform the
dynamic analysis. These are shown in Fig. 1, with the following explanation:

1) Entry box: The box that is the entry point to the analysis process. It accepts the incoming
applications, assigns the analysis to the virtual Android networks, and eventually writes the
results to the database. For this instance, it is a Lubuntu 12.04 Operating System (OS) with
about 8 GB Random Access Memory (RAM), 8 Central Processing Units (CPUs), and 450
GB of hard drive space.

2) Database: A MongoDB database that holds the results of static and dynamic analysis. This
server is a VM merely as a manner of convenience and should be run on a separate

 2

physical server in a realistic setting. More information on the data structure will be
explained under Methods and Results.

3) Analyzers: Several of these VMs exist as clones of each other. They each have 2 network
interface cards: one that connects to the primary VMWare network for communication, and
another that connects only to the virtual mobile device assigned to that analyzer instance.
These machines interface with the mobile devices for analysis and simulate regular
network infrastructure, such as web and domain name servers. These VMs are all currently
Lubuntu 13.10 OS with 1024 MB RAM, 1 CPU, and 20 GB of hard drive space.

4) Android VMs: Currently, these are all individual clones of an Android 4.0.3 device. They
are all preconfigured to identify their respective analyzer as a domain name server. In the
future, additional Android versions will be present and more steps will be taken to
obfuscate their identity as VMs.

Fig. 1 Overview of VM network structure

The virtual network that connects the entry box, the database, and the analyzers is the default
network that connects most machines, including the non-VM physical machines.

Each of the analysis networks between the analyzers and the Android VMs exists to capture
traffic that moves between the phone and the analysis box that interacts with it. The devices on
these networks each have specific Internet Protocol (IP) addresses, in keeping with their

 3

existence as clones of each other. This IP setup ensures a degree of consistency with captured
network traffic.

3. Methods

3.1 Entry Box

After an application has been statically analyzed by A2D and its results stored in the database,
dynamic analysis can begin. The application is pushed to the entry box and the host process is
launched. This host process collects the static analysis results from the database, chooses a free
analysis pair, reverts them to pristine snapshots, and pushes the application and result metadata
to the analyzer. It then launches the dynamic analysis scripts on the selected analyzer. The host
process then enters a loop and waits patiently for the analysis pair to finish and return the results.

The host process is a Python script named “host_process.py”. During initialization, it spawns a
separate producer thread that solely pushes applications into a shared queue. Then, the host
process creates several consumer threads based on the number of analysis pairs available. These
consumer threads constantly pull fresh applications from the shared queue and perform the actual
dynamic analysis.

Before a consumer thread begins the dynamic analysis, it uses the pymongo Python module1 to
establish a connection with the database server and requests several points of data about the
application from its static analysis results: permissions, phone numbers, domains, IP addresses,
hashes, and the Android manifest file. The results are converted into a JavaScript Object
Notation (JSON) file that will eventually be pushed to an analyzer.

The process attaches to the selected analyzer via Secure Shell (SSH) using the third-party
paramiko Python module.2 It then opens a Secure File Transfer Protocol (SFTP) connection and
pushes the application file and the JSON file containing the metadata from the database.

When the 2 files are in place, the consumer thread starts the dynamic analysis script on the
analyzer via the SSH connection.

As the dynamic analysis script runs on the analyzer, the thread enters a loop that constantly
checks to see whether output files have been generated. This check is essentially a call over SSH
of “ls /tmp/out.*” and a check for the existence of 3 of the expected output files: “out.pcap”,
“out.strace”, and “out.logcat”.

The 3 output files represent:

• out.pcap: captured network traffic in the form of tcpdump packet capture

• out.strace: a log of system function calls using the strace tool

 4

• out.logcat: the standard logging output for Android

When the 3 files are present, the consumer thread breaks out of the sleep cycle and continues
processing. SFTP is used again to pull the 3 output files and attempt to pull the front end
screenshot. Not all applications have a front end and thus will not have a screenshot present.

With the files available locally, the thread stops its analyzer and mobile VMs.

All of the files are prepared for insertion into the database. The screenshot, network traffic,
strace, and logcat output files are directly inserted into the database, with the latter 3undergoing
additional parsing.

First, the strace output is broken down. A parser takes each line and extracts the process
identification (ID), function name, arguments, descriptor, timestamp, and any error codes
present. A Python dictionary is assembled using these data and other implied metadata—such as
the SHA256 hash of the application for ID, the identifier of the strace file in the database, and a
run identifier to differentiate separate analysis attempts of the same application. Each of these
dictionaries is pushed to the database for each line in the strace file for future analysis (Fig. 2).

{'_id': {'apk_id': 'b3ffca1691c948f397c85be4a751eb0f74a4b0506d1aa2af897c262c548cbb12',
 'datetime': '2014-04-02T18:50:28.861Z',
 'instance_hash': 'f3a4d50fbd3cbd53eb7903220c960589',
 'run_id': 0},
 'apk_id': 'b3ffca1691c948f397c85be4a751eb0f74a4b0506d1aa2af897c262c548cbb12',
 'args': '("/data/data/com.socialnmobile.dictapps.notepad.color.note/databases/colornote.db-wal",
F_OK)',
 'datetime': '2014-04-02T18:50:28.861Z',
 'descriptor': '-1',
 'error': 'ENOENT (No such file or directory)',
 'file_id': 'f6bc54cd326e7d7b6d323f422309d1e2d542384f8abcf8894b8580f848272533',
 'full_line': '[pid 1934] 1396479028.861210
access("/data/data/com.socialnmobile.dictapps.notepad.color.note/databases/colornote.db-wal",
F_OK) = -1 ENOENT (No such file or directory)',
 'function': 'access',
 'pid': '1934',
 'run_id': 0,
 'time': '1396479028.861210'}

Fig. 2 Example strace line after parsing

 5

The logcat output is parsed next. It is handled very similarly to the strace output. Each line has
the date, time, process ID, thread ID, logging level, grouping tag, and the actual log message
extracted. Each line becomes a Python dictionary and is inserted into the database individually
(Fig. 3).

{'_id': {'apk_id': 'b3ffca1691c948f397c85be4a751eb0f74a4b0506d1aa2af897c262c548cbb12',
 'datetime': '2014-04-02T22:46:21.976Z',
 'instance_hash': '2e8fcfb85a95807b86d0a712cefc79dc',
 'run_id': 0},
 'apk_id': 'b3ffca1691c948f397c85be4a751eb0f74a4b0506d1aa2af897c262c548cbb12',
 'datetime': '2014-04-02T22:46:21.976Z',
 'file_id': '195bbacf4b2b1f274d712d541357e4672071e622707def29838264101a93ae87',
 'full_line': '04-02 22:46:21.976 1269 1281 W PackageParser: Unknown element under <intent-
filter>: intent-filter at /system/app/AndAppStore-1_6_9.apk Binary XML file line #28',
 'level': 'W',
 'message': 'Unknown element under <intent-filter>: intent-filter at /system/app/AndAppStore-
1_6_9.apk Binary XML file line #28',
 'pid': '1269',
 'run_id': 0,
 'tag': 'PackageParser',
 'tid': '1281',
 'time': '22:46:21.976'}

Fig. 3 Example logcat line after parsing

Finally, the packet capture file is read. The parser uses the dpkt Python module to process the
capture file one packet at a time.3 Every packet has the following pulled, if applicable: the source
and destination IP addresses, source and destination ports, timestamp, and data. These values are
placed into a Python dictionary, similar to strace and logcat output, and stored in the database for
each packet.

 6

Packets for some protocols have additional pieces extracted. Domain name lookups have the
requested domain included in the value dictionary, whereas web requests have the Hypertext
Transfer Protocol (HTTP) headers and lookup method included (Fig. 4).

{'_id': {'apk_id': 'eec4ade3830652ef07baf5081727403818bea47e0f864dfdc93352f1b5659aa2',
 'datetime': '2014-04-02T18:50:54.457Z',
 'instance_hash': '2cac8ed1d0ff2095dcaaede5f6d560f6',
 'run_id': 0},
 'apk_id': 'eec4ade3830652ef07baf5081727403818bea47e0f864dfdc93352f1b5659aa2',
 'data': 'afMBAAABAAAAAAAAA3d3dwhmYWNlYm9vawNjb20AABwAAQ==',
 'datetime': '2014-04-02T18:50:54.457Z',
 'dip': '192.168.1.102',
 'dip_int': 3232235878L,
 'dns_lookup': 'www.facebook.com',
 'dport': 53,
 'file_id': '25b5bcba8863ab96994de5dca9b02b4bcdc46256b2489e784492ad7796291350',
 'instance_hash': '2cac8ed1d0ff2095dcaaede5f6d560f6',
 'protocol': 'UDP',
 'raw_packet':
'CAAnlcbqCAAnj/JMCABFAAA++iZAAEARvGrAqAFnwKgBZm0aADUAKq4eafMBAAABAAA
AAAAAA3d3dwhmYWNlYm9vawNjb20AABwAAQ==',
 'run_id': 0,
 'sip': '192.168.1.103',
 'sip_int': 3232235879L,
 'sport': 27930}

Fig. 4 Example packet, performing a domain lookup, after parsing

Once the last of these data is stored in the database, the host process is finished. The data have
been collected, stored, and will await further analysis and assessment.

3.2 Analyzer

On the analyzer machines, several services run that simulate a larger network. Two simple
Python-based web servers run on ports 80 and 443. These are direct command-line calls to the
stock Python module SimpleHTTPServer. Each point to a directory contains only 1 Hyper Text
Markup Language (HTML) document. They are meant to encourage applications to continue and
not send a reset signal when requesting a web resource. A domain name system (DNS) server is
also running, which redirects all lookups to the analyzer’s IP address. This DNS server will
ensure that all traffic is seen going toward the same box. It is implemented by calling the third-
party simpledns Python module by JD Zamfirescu, derived from a script by Francisco Santos,
and letting it run as a service. All of this is to avoid allowing a malicious application to break out
of the sandbox into a proper network.

 7

The primary dynamic analysis script lives on the analyzer. Once the host process pushes the
application and metadata to the analyzer, the host launches this script to begin communications
between the analyzer and its paired mobile device.

Before pushing the application to the phone, the script sets some fake values that it may provide
the mobile device over the course of analysis. This information includes a randomly generated
phone number for attempted phone calls and SMS messages and a random latitude–longitude
location to simulate phone movement.

Next, the script reads the JSON-formatted metadata provided by the original host process. These
data are used later to determine which actions are relevant and should be attempted over the
course of running the application. For example, if an application requires permission to access a
phone’s location, the script will change the location several times to elicit a reaction from the
running application.

The script now begins to interact with the mobile VM. It first establishes a connection using
Google’s debugging tool, “adb”. The tool, adb, is used several times to interact with the mobile
VM, by capturing the screenshot, sending SMS messages, executing arbitrary shell commands,
and installing the application.

With the connection established, calls are made to start tcpdump for reading network traffic and
logcat to watch log files.

Analysis is ready to begin in earnest. The application is installed on the phone and then launched,
all via adb. After a delay to allow the application to warm up, a screenshot is taken of the initial
interface, if applicable.

 8

What follows is a series of artificial interactions that are called depending on requested
permissions. Table 1 shows which requested permissions result in which interactions. An
application only needs to request 1 of the permissions to cause that row’s actions to occur.
Unless otherwise indicated with a lowercase prefix, assume all listed permissions begin with
“android.permission”.

Table 1 Permissions and associated interactions

Permissions Analysis interactions

ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION
ACCESS_GPS
ACCESS_LOCATION
ACCESS_LOCATION_EXTRA_COMMANDS

Creates a telnet connection to the phone and sends a
command to change the geolocation of the phone using the
arbitrary latitude–longitude previously generated

SEND_SMS
READ_SMS
WRITE_SMS

First, interacts with the phone to send a random SMS
message from the phone to the previously generated false
phone number. Then, the script makes a telnet connection to
send another random text message to the phone.

READ_CONTACTS
WRITE_CONTACTS

Adds a contact to the phone’s local contact list consisting of
a randomly generated name, email address, and the
previously generated false phone number

ACCESS_WIFI_STATE
CHANGE_WIFI_STATE
CHANGE_WIFI_MULTICAST_STATE
com.dell.enterpriseservices.SET_PROPERTY_WIFI
com.dell.enterpriseservices.SET_PROPERTY_WIFI_PROX
Y

Disables then re-enables Wi-Fi on the mobile device

READ_PHONE_STATE Iterates through each phone number found inside the
application and simulates a call to the phone from those
numbers. Alternatively, if no phone numbers were found, it
uses a single, random-generated phone number.

After the permission-specific interactions have run, the script loops over every listed broadcast
receiver for the application and sends an instance of that broadcast. It is anticipated that many
broadcasts will fail without necessary extra fields; however, some broadcasts may have a result.

Finally, the application is stopped and uninstalled. The dynamic analysis script is finished, and
the host process will soon retake control.

3.3 Phone

The phone itself does very little except be a phone. The dynamic analysis script installs and
launches the application, and it handles all of the interactions.

The dynamic analysis script does alter 1 phone property: “net.dns1”. This property is used to
identify the phone’s domain name server, and it is set to point to the analysis box.

 9

4. Results

Over the course of the dynamic analysis process, 3 or 4 output files are generated and stored in
the database for eventual in-depth analysis.

The first and optional output file is a screenshot of the application’s interface. This output file
may or may not exist, depending on whether the application has a graphical interface. Its use in
analysis is likely low and would only give an indication of whether the application has a splash
screen that might block thorough dynamic analysis.

System calls performed by an application are captured in the strace output file. The strace tool
attaches to the application’s process ID shortly after launch and captures system calls during the
entirety of analysis. After the output file is pulled to the entry box, the host process parses
relevant data from each line of the file: process ID, function name, arguments, descriptor,
timestamp, and any error codes present. These data are stored in the database under the
“a2d.strace” collection and will await further analysis.

Logcat output is handled similarly to strace output. The logcat listener initializes before the
application is even installed and constantly listens throughout the dynamic analysis. Once the
output file reaches the host process, it parses the date, time, process ID, thread ID, logging level,
grouping tag, and the actual log message extracted from each line and stores it in the database
under the “a2d.logcat” collection.

Network traffic is captured by a “tcpdump” process running on the mobile device. All traffic
would travel across a network with only 2 nodes: the mobile device and its paired analyzer. The
IP addresses are statically assigned and consistent for every pair of phone and analyzer (Table 2).

Table 2 IP addresses assigned to VMs

Virtual Machine IP Address

Mobile device 192.168.2.3

Analyzer 192.168.2.2

The packet capture (pcap) file is pulled to the analyzer, then to the host process. The host process
then iterates over every packet captured and parses potentially useful information for storage in
the database, including: the source and destination IP addresses, source and destination ports,
timestamp, payload, and potentially other pieces for specific protocols. Each packet is stored
individually in the database under the “a2d.pcap” collection.

Eventually, features from these results will be used alongside static analysis results to provide a
more accurate threat score, but that is beyond the scope of this paper.

 10

5. Conclusions

A2D is currently a static analysis tool only. As a result, it may miss any obfuscated functionality
within applications. By expanding into dynamic analysis, better visibility into hidden features
should be achieved.

Capturing strace and logcat output can help illuminate malicious functionality hidden in
obfuscated or compiled code, whereas captured network traffic can identify malicious servers
that a piece of malware may attempt to contact. Activity patterns may also be captured that can
differentiate malicious applications from the benign.

Combining these data will give better scoring results and provide analysts additional information
for deciding whether a mobile application can be cleared for use on critical devices.

 11

6. References

1. pymongo. 2008–2014 [accessed 2014 Dec 18]. http://api.mongodb.org/python/current/.

2. Pointer R, Forcier J. paramiko. 2003–2014 [accessed 2014 Dec 18].
https://github.com/paramiko/paramiko.

3. dpkt. 2013 [accessed 2014 Dec 18]. https://code.google.com/p/dpkt/.

 12

List of Symbols, Abbreviations, and Acronyms

A2D Application Analysis and Decision (ARL mobile application analysis tool)

CPU Central Processing Unit

DNS domain name system

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

ID identification

IP Internet Protocol

JSON JavaScript Object Notation

OS Operating System

pcap packet CAPture (a filetype that stores captured network traffic)

RAM Random Access Memory

SFTP Secure File Transfer Protocol

SMS Short Message Service

SSH Secure Shell

VM virtual machine

 13

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RSRCH LAB
 RDRL CIO LL
 RDRL IMAL HRA RECORDS MGMT

 1 DIRECTOR
 (PDF) US ARMY RSRCH LAB
 RDRL CIN D
 J EDWARDS

 14

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Structure
	3. Methods
	3.1 Entry Box
	3.2 Analyzer
	3.3 Phone

	4. Results
	5. Conclusions
	6. References
	List of Symbols, Abbreviations, and Acronyms

